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FOREWORD

This report was prepared by the Polymer Branch of the Nonmetallic Materials Division.
The work was initiated under Project No. 7340, "Nonmetallic and Composite Materials,"
Task No. 734004, "New Organic and Inorganic Polymers," and the research was con-
ducted by Dr. M. T. Gehatia. The work was administered under the direction of the Air
Force Materials Laboratory, Research and Technology Division, Air Force Systems
Command, Wright-Patterson Air Force Base, Ohio. The report covers research con-
ducted from January 1964 to November 1964. The manuscript was released by the author
in November 1964 for publication as an RTD Technical Report.

This technical report has been reviewed and is approved.

WILLIAM E. GIBBS
Chief, Polymer Branch
Nonmetallic Materials Division
Air Force Materials Laboratory
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ABSTRACT

Equations of sedimentation were derived making assumptions concerning the shapes of
macromolecules in solution dependent upon the centrifugal field which can be varied dur-
ing the experiment. Angular velocity, sedimentation coefficient and diffusion coefficient
were considered as general functions of time: w = R(t); s*=sd(t); and D* =D% (t), where
s and D are the values of these coefficients for w = 0. Considering the displacement, Ar,

of the flowing particles as being very small in comparison with their average radial
distance, r, from the center of rotation, the dependency upon the centrifugal field could
be seen to be dependent on the angular velocity alone.

Neglecting the influence of the meniscus and the bottom of the ultracentrifugal cell, and
further, disregarding dependency on concentration c, such concentration appearing in a
sectorial synthetic boundary cell could be expressed by the following formula:

2 OD

c(r;t) = 2coe a fueu (2pu)du,PO

where

c = initial concentration; r0 = initial boundary;

t

p(t) =sWi2  B(t) f P(u)du;
f 0

a eeB(t) f 2B(u)(udu
0

reB

=0r.P 
r

(4Dat)"2 (4Dat)'

10 = Zero Order Complex Bessel Function.

The gradient of concentration was expressed by the following approximate equation:

ac ~-28 (oB B2 (Br2

dr (4rDat)1 '2  r 4 D a t

Since the functions of time, B(t) and a(t), appearing in the formulas are very general
and do not need explicit definitions a priori, a principle of analogy was suggested, based
upon a formal similarity between these newly derived equations and formulas obtained
previously under different assumptions. With the help of this principle, any other formula
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of sedimentation, or any method of computation derived previously for any conditions,
can be easily transformed into corresponding expressions satisfying the current assump-tions, providing such formulas were derived from analogous basic equations only by
integration or by partial differential with regard to r.
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INTRODUCTION

Ultracentrifugation as a method of investigation provides information on molecular
weight and sizes of polymers. It seems, this technique may also provide information on
additional physical properties of macromolecules such as elasticity and intramolecular
field of forces. The nonuniformity of centrifugal forces exercises stress on an elongated
particle. The following strain may change its shape and may affect the parameters of
hydrodynamic friction. If such changes could be recorded with adequate accuracy, meas-
uring the rate of flow, and if the basic theory of such effects would be developed, tech-
niques of ultracentrifugation could lead to the evaluation of elastic intramolecular forces,
and could contribute to a better understanding of the elastic properties of high polymers
in solid state.

Since a variable angular velocity during the experiment may be considered to be a
better experimental routine for the investigation suggested above, an attempt has been
made to derive the corresponding equations of sedimentation assuming such velocity is
a function of time. In addition, the shapes of the sedimenting molecules, and also their
characteristic parameters of flow, were considered as functions of this variable cen-
trifugal field.

The most general differential equation characterizing the Brownian movement in an
n-dimensional "centrifugal field" can be derived from the "universal equation of flow"
and expressed by the following formula:

ac = V v(D *c)-sw Rc1, RI)a t

where c = concentration; t = time; w = angular velocity; ,1 = n-dimensional vector repre-
senting the distance from the center of rotation; D* and s* = corresponding coefficients
of diffusion and sedimentation.

The conventional routine maintains a cylindrical centrifugal field with radical symmetry,
retains constant w, and considers s* and D* as constants during the run. The corre-
sponding differential equation of flow derived from Equation 1 is usually known as the
"Equation of the Ultracentrifuge" (Reference 1):

r D sWo2rc }aT T 0 r 7r 2

where r denotes the distance from the center of rotation. Equation 2 was solved in dif-
ferent ways by Faxen (Reference 2), Archibald (Reference 3), and Gehatia (Reference 4
and 5). Fujita (Reference 6) modified Equation 2 assuming linear dependence of s* on c,
and suggested its approximate solution. In the current work, Equation 2 is modified to
satisfy the newly assumed conditions, and is solved accordingly.

It was already mentioned, that if a sedimenting particle changes its shape because of
variable centrifugal field, w2 r, the parameters s* and D* have to be considered as
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functions of such a field:

s = * 2(wr (3-a)

D D*(wor). (3-b)

As a matter of fact the variations of W2 during the experiment can be considerable, and
their range extends from 0 to ca 3.5 x 107 sec-. On the other hand, a displacement, Ar,
which a dissolved particle can undergo during the experiment is very small in compar-
ison to the value of r. Therefore, the variations of r can have only a very negligible in-
fluence on parameters defining s* and D*, and one may consider some average distance
<r> as constant. Thus one can express s* and D* as functions of wonly.

Let angular velocity be any function of time:

o2 = R M, (4)

hence:

S S W 2 M) = s,10) (4-a)

D D W(2 (t))= D9(t); (4-b)

where s and D are corresponding values of s* and D* for wo = 0.

Equations 4 and 4-a lead to the following expression:

s7* W2 = s.J(t)R(t) = )9(t). (5)

Substituting Equations 4-b and 5 into Equation 2, one can obtain a modified equation of
flow corresponding to the conditions assumed in the current work.

ac -I a { r[D1(t)L2 - 3(t)rcj} (6)
at r dr [ rD()}

An expression describing distribution of concentrations in the ultracentrifugal cell
will be obtained by applying a stochastic method. This same method proved to be success-
ful in the case where the conventional equation was treated, assuming constant W, s* and
D* (Reference 4). It will be shown, that this method of calculation does not require ex-
plicit expression for c (t) and 8 (t) a priori, and therefore, it is most general in all cases
in which the parameters are only functions of time.
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RANDOM WALK OF A SINGLE PARTICLE IN SOLUTION
EXPOSED TO ONE DIMENSIONAL CENTRIFUGAL FIELD

Consider a hypothetical, infinitely long one dimensional centrifugal field along x-
coordinate. A particle in a viscous medium moves in that field according to Stoke's re-
lationships, and carries out a latent flow which permits one to neglect accelerations
caused by constant forces. Its total velocity is a sum of velocity caused by pure sedimen-
tation (v ) and velocity caused by pure Brownian movement (vD), each independent of the
other. According to the Svedberg theory (Reference 7):

v = (t)x, (7)

where

/ = s 2 (T-a)

Hence, the total velocity can be expressed by:

) ,3(tx + VD. (8)

Integration of Equation 8 leads to the following formula:

t

x - x eB(t) B(t)f e-(u)vD du,
o

where

t
B(t) f /e(u)du, (10)

0

and xo is the initial location of the moving particle.

Since the quantity vD appearing under the integral in Equation 9 is an undefined random

variable, this integral cannot be evaluated. The'efore, the following method will be ap-
plied. First, the time interval, O-t, will be divided into N number of equal time intervals

N
t I "rr = N r, (0t0

nI=1

where N is a very large, and r a very small number. Now, thg integral under consid-
eration will be replaced by the following summation:

B(t) B(t) N -B(nr)
x -o •0 e • gn,()

n=I

3
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where gn=vD,n rn is a displacement caused by Brownian movement during the time inter-

val rn*

In general, g does not depend on a field of forces, providing such forces do not change

the shape of a particle during the experiment. Thus, such displacement can be treated
according to the theory of diffusion (Reference 8). However, in the current work the shape
varies with time which is dependent upon a variable field, and the usual way of compu-
tation of such a random walk cannot be applied. According to the Einstein theory of dif-
fusion (Reference 9), the second statistical moment of gn is given by the following relation-
ship:

[U =(g) <gn2 > = 2D*rn, 13)

Substituting Equation 4-b into Equation 13 one can obtain:

< gn 2 > = 2 Db(nr')

In the absence of a centrifugal field:

gn(W =O) = Bn (14)

where 6 is a pure normal diffusion, characterized by:

< 8 n 2> = 2 Dn(4a

Since the factorB (n T) is a systematic function of time, Equations 13 through 14-a are
valid, if:

gn = an D (nTr) .(15)

Therefore, substituting Equation 15 into Equation 12 one will obtain:

BMt) t) B -B(n-)X-X0oe 6 e e
n=4

4
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According to the theory of Brownian movement (Reference 10) the probability, f(6n),

that a single event 6n may occur leads to the following expressions for statistical mo-

ments:

=o 8n f f(3nd(d(n) = I * (17-a)
-O)

_WW +GD

I(8n) A (I//o(Bn)) n f(8n)1d an 0; (17-b)
-W

+Wf 82.f( . d n 0_ 2 c
/L2 (an 1 (//L 0(a ))f f(8)d 8n n (17-c

-OD

where cr is the standard deviation of 8 n If all nP's are equal, then a is a constant for

any n:

o'= o= const, n = I..N. (18)

Now, both sides of Equation 16 will be divided by a. Each term yn appearing in the new
summation can be defined as:

I B(t)-B(nr)

In (19)

and the total expression becomes:

B(t)x- X0 e N
=I Y = Y( (20)

Each term yn of Equation 20 represents a single displacement which occurs during Tn"

In the following the moments of distribution of yn will be evaluated for any n. From

these particular moments one can derive a function of probability that the total resulting
displacement Y will occur during the entire interval of time t.

5
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The displacement yn is a random quantity, given as the product of another random

quantity 68n which is the pure Brownian displacement, and a following systematic function

of time:

l B(t)- B(nr)
T(nr) -- e n).(21)

Since the event Yn occurs if the event 6n occurs simultaneously, the probability P(Yn) of

the displacement Yn is identical with the probability of f(8n) of an:

f( n) =p(yn . (22)

Therefore, the statistical moments of any particular distribution of yn can be obtained

from the following calculations:

M T I -.8-- T (n'r) (22-a)

IL,(Yn -:TLo(Yn f Yn P(Yn)dYn T(nTr f 8 f(8n d8 0;

-- D --

and:

,(yn2 (: ,//o(yn))fnyn p(yn) dy: .2-. T (nr) f Sn2 f(8n)dSn T (nr) (22-c)

-W -OD

Thus, it has been shown T(n r) is the standard deviation of yn"

A new function SN will be now introduced according to the following definition:

2 N 2B(t) N -2B(n) .

S I T'(nr) 1 • e (nr). (23)
N n=1 n=1

6
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Since N is very large, the summation appearing in Equation 23 can be replaced by the
integral:

N Nt t
r 2 N 2B(t); -2B(u)

S= T2 (vr)dv f- T2 (u)du t e f e c(u)du (24)N f o
0 0 0

Denoting:

t

I 2BMtf2 B M~o
S e tf e Z (u)du, (25)

0

the introduced function SN can be defined as:

I I

SN N2 a 2 . (26)

According to the Central Limit Theorem (Reference 11) the total displacement Y defined
by Equation 20 would have Gaussian distribution, if all standard deviations of the partic-
ular displacements yn's are equal. In the case under consideration each standard devi-

ation of yn depends upon n. Therefore, this theorem cannot be applied with regard to Y.

However, there exists another Limit Theorem which shows that the Gaussian distribution
can be attributed to the function Y/SN, providing the two following Lindeberg Conditions

(Reference 12) are held:

lir S =O (27-o)
N -- O

and:

lim T(nr) 0, n= I-...-N (27-b)
SN

7
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Therefore, if at any time a is larger than zero:

0< k :_ a, (28-a)

and the standard deviation of any yD is a bounded quantity:

T(nTr) <_H< OD, n= I... N, (28-b)

the Lindeberg conditions do exist:

I I I I

Iim SN = 1Im(No-1 )> kTIim NI = O, (29-a)

and:

lim T(nr) < H --N (29-b)
rn -j" 2 lmN =0 (29-b

N-"OS

If Equations 28-a and b hold, the Lindeberg conditions are fulfilled, and according to the
modified Limit Theorem the Gaussian distribution can be attributed to the function
Y/SN:

S( )e d (30)S NT N (2 r 2 ")"A

By combining Equations 13, 20 and 30 one can show the probability that a single
particle located initially at x will be found at time t at x. This may be expressed by

the following formula:

_ ( x-x(eB )2

I t 4DatP(x•xo0 ;t) = (41. Dat) "z • (:31)

Consider now a system of identical particles in solution, located initially within an
infinitesimal layer dx at xo, and having concentration c0 . If the flow of each particle

8
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is independent of the other, the expression for concentration at any t and any x can be
derived from Equation 31:

c d x 4 D a t

c(x;t) 0 0 e 4Dat (32)
(47rDat)

Assuming the following initial conditions, c(t=o)=o for x <xo, and c(t=o)=c0 for xxX0 , the

corresponding expressions for concentration can be obtained by integrating Equation 32: S(X-X

c(x;t) f C0  ,F e 4Dat dxO (33)
YO (4vrDat) eo

Hence:

- err x 0eB-x ]4

c(x;t) =-Coe MIaerf ,1121((4Dat)

where:'

Y 2
erf(y) 2 f e eu du (35)

7" 0

The corresponding differential equation of one dimensional flow along the x-coordinate
can be derived from the general equation of flow, Equation 1. The resulting expression is
given by:

8c _aD (C xc](36)

It can be shown, the formulas obtained for concentration, Equations 32 and 33, satisfy
the differential Equation 36.

9
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DISTRIBUTION OF CONCENTRATION IN A CENTRIFUGAL FIELD
MAINTAINING RADIAL SYMMETRY OF FLOW

The conventional experimental techniques utilize a sectorial cell in which the equations
of flow maintain radial symmetry. In the current work a two-dimensional field with such
a symmetry is constructed in the following manner: First, two one-dimensional centrif-
ugal fields previously discussed and characterized by corresponding x- and y-coordinates
are perpendicularily superimposed. Consider a particle located initially at point (xo;yo).
It moves in this newly constructed plane under influence of the simultaneously acting
centrifugal forces, and in addition, it undergoes Brownian movement. A probability that
such a particle may move during a time interval o-t from the point (xo;yo) to another

point (x;y) is equal to the product of two independent probabilities: (1) the displacement
from x° to x, and (2) the displacement from y0 to y, during the same interval of time.

Applying Equation 31 one can obtain:

P(x;xo;y,yo;t)dxodYo P(Xixo;t)dxo P(y;yot)dyo

47r Dat 4Dat

Now assume that a system of particles located initially within an infinitesimal area
dso=dx0 dy0 undergoes random walk in the plane described above. If the movement of each
particle can be considered to be independent, and if the initial concentration is co, then

the concentration c at time t and any point of the plane (x;y) can be expressed by the
following equation:

dc- cds_ -[(XeB-X )2 + (yoeB _y)2]
dc 4 Dt a (38)

41 Dat

10
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YK
( O YO d (x;y)

4. r0 X
Figure 1. Displacement of a Particle in a Two-Dimensional Centrifugal Field

To transform the theoretically constructed centrifugal field into a real field charac-
terized by radial symmetry; the system of two linear perpendicular coordinates (x,y)
must be replaced by a new system of polar coordinates (r, P0). (See Figure 1.) From such
a transformation one can derive the following relationship between old and new coordi-
nates:

dxodyo dso rodrod4 P (39-0)

2 2 2(39-b)
x + y r(3-b

xxo + YYo = rro cos4r; (39-c)

where r° is the radial distance of (x ;y ).

By substituting Equations 39-a, b and c into Equation 38 one can transform Equation 38
into the corresponding expression for polar coordinates:

B2- 2 2Bdo r; r0 ;t co rodro exp { 2rro B cos k -r-ro e }(40)

7 D; at 4Dat t

11
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A further generalization of Equation 40 may be obtained by assuming the molecules to be
initially enclosed within one infinitesimal ring at distance r0 from the origin, and that

their initial uniform concentration was co. A corresponding expression for c can be found

by integrating Equation 40 over all values of (p:

( r2_+ to2 e -2 "
2cro dro e fd taco (4)

c = 2 dc(r, o4)dco = f -n'Da e do, (41)
0 0

where:

2rroeB
m = 2 (42)

Since:

f 7em C1sOd 0 ="o(m), (43)

where 10 is a Zero Order Complex Bessel Function, Equation 41 goes into the following

expression:

(2+ r 2 2B)
2cr 0 4oat ( rroe

c(riro;t) 4 Dat e at t dr° (44)

It can be shown that Equation 44 satisfies the corresponding differential equation of flow,

Equation 6.

PRINCIPLE OF FORMAL ANALOGY AND ITS APPLICATION

To derive expressions describing real systems, Equation 44 must be integrated over
all values of r within the appropriate limits, according to the experimental conditions.

It is obvious the resulting expressions will need further mathematical treatment and
additional transformations to derive formulas according to the different experimental
objectives and •-orresponding methods of computations. However, such additional mathe-
matical treatment can be avoided in many cases by utilizing the following suggested prin-
ciple.

Since the functions of time B(t) and a(t) appearing in the derived expressions are very
general, all corresponding equations derived under any assumptions made for w, D* and
s*, can-be brought to the same analogous formal expressions, providing the mathemati-
cal treatment necessary is carried out only with regard to the r-coordinate, and does
not involve any transformations of functions of time with regard to the variable t.

12
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Therefore, any type of expression obtained only by partial differentiation of similar basic
equations, or by integration with regard to r, can be expressed by the same formal corre-
sponding equation. After the final expressions have been derived according to the formal
analogy, the explicit definitions have to be substituted a posteriori into the appearing
functions of time. By help of this method any existing expression for any other case, if
evaluated without utilizing variable t, can be transformed into another formula associated
with different assumptions for w, s* and D*.

Applying this principle of analogy, one can easily obtain the following expressions,
which can be given as examples:

1. According to the initial conditions, let c(t=o)=o for r <ro, and c(t=o)=c0 for r?_ ro0
The corresponding formula for concentration derived previously for constant centrifugal
field and constant coefficients of sedimentation and diffusion (Reference 5) can be trans-
formed into the equation describing the current conditions:

2 0

-2B -p -U
c(r,t) 22Co e ue I 0 (2pu)du, (45)

PO

where

r

P t112 (6a(4Dat)

r e46-b)
PO (4Dat)

2. Maintaining these assumptions, one can transform an approximate formula of gradient
of concentration derived for constant field and parameters of flow (Reference 5) into a
corresponding equation for the general case:

-2B rB (r0 eS-r)2
ac =co e-2 )? e" 4Dat

a}r (4r.Dat) ./2(ro (7

3. The well known "Svedberg Method" (Reference 7) leading to the evaluation of sedi-
mentation coefficient under conventional conditions from the shifting of the peak of exper-
imental curve, can be transformed by analogy into a general formula:

r = ro + B(t) (48)

13
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where rmax is a radial distance of the maximum gradient and (Reference 4):

B(t) = Sf R(u) J(u)du (49)

0

From Equation 48 one can find s and one of the parameters of the function 4 (t).

4. Making the following assumptions:

= S = const (50-a)

De = D = const; (50-b)

W(t =0) 0O (50-c)

2W g- const; (50-d
dt

one can obtain:

sgto (51-o)

B _ -sgt2; (51-b)

and:
I rv r x r + _ sgt 2  (51-c)

Plotting In rmax vs. t 2 one can evaluate s. The corresponding a, is given by:

I e2gt -sgu2
a e a du, (52)

0

or:

OD _2_tl _ (2sgt2l2
a = =. )! I + + + (53)n=O (2n+l)! I x 35 1 x 3x 5

Usually (2sg t1) << 1, and the series in Equation 53 converges rapidly.

14
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5. Let:

o(t=O) =0 (54-a)

2 gt g constl (54-b)

s ( = s(I + ksw 2) i (54-c)

D* = D( I + k D W (54-d)

where k and kD are constants.

Hence:

)3(t) s(ks gt 2 + gt); (55-a)

I'' I 2+
-~t = 2 sgt+ -•- SksOg t (55-b)

te 2 t 2 , 3

stg 1+ -:ksgt/ -sg(u +-9"ksgU3I+kglu15c
a e 2 2 1 + k gu)du (55-c

0

From the generalized "Svedberg Method" one can find s and ks, by utilizing a plot of the
following expression:

rmax -0'ro= sg+ I 2 (56)
t 2 -g + 3 t(

CONCLUSIONS

The equations derived in the current work and the method suggested may enable one
to carry out a mathematical analysis of experimental data in cases of (1) variable angu-
lar velocity, and (2) if s* and D* depend upon w0. It seems that the parameters defining
s*=s*(w) and D*=D*(w) are also functions of concentration. Therefore, one can expect to
obtain additional important information on the shape of sedimenting particles and the
intramolecular field, if the relationships between the concentration and the parameters
of shape could be derived from the theory of hydrodynamics. Such theoretical development
may also contribute to a better elucidation of problems related to the statistical mechanics
of polymers in solution.

15
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center of rotation, the dependency upon the centrifugal field could be seen to
be dependent on the angular velocity alone.
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